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Abstract

The investigation data on seismic wave attenuation in the lithosphere and upper mantle of
the northeastern flank of the Baikal rift system obtained with a seismic coda envelope and sliding
window are considered. Eleven local districts were described by one-dimensional attenuation
models characterized by alternation of high and low attenuation layers, which are consistent
with the results obtained previously by Yu.F. Kopnichev for the southwestern flank of the Baikal
rift system. The subcrust of the lithosphere contains a thin layer with high attenuation of
seismic waves likely related to higher heterogeneity (fragmentation) and occurrence of fluids.
The lithosphere basement depth varies from 100–120km in the west within the Baikal folded
area to 120–140km in the east within the Siberian Platform. It is concluded that there are two
asthenosphere layers. Based on specific features of the lithosphere and upper mantle structure,
it can be assumed that they were subject to gradual modification involving fluidization processes
and partial melting in the Late Cenozoic extension under the influence of distant tectogenesis
sources.

Introduction

To date, it has been proved by a sufficient amount of data that there is no single large mantle
anomaly under the Baikal rift system (BRS). Thus, the active rifting hypothesis [1] fails to explain
fully the forma tion of rift structures. In this connection, it can be sug gested that the extension
caused by nonlocal distant sources of tectonic forces [2, 3] initiates gradual changes in the lithosphere
properties throughout the section. They are observed as local anomalies expressed, in particular, as
deep variations in seismic wave attenuation and velocities.
This paper considers the results of our investigation of deep variations in seismic coda wave at-

tenuation in the lithosphere and upper mantle of the BRS north eastern flank. Previously, based on
coda waves of regional earthquakes, we calculated a seismic quality factor of the lithosphere through-
out the BRS north eastern flank and compared the results obtained with the crust consolidation
age, degree of seismic activity, and faulting [4, 5]. The few works of predecessors investigating the
quality factor (Q) of the BRS crust and upper mantle, in particular, the northeastern flank, were
mostly local in nature. A few publications on this subject can be mentioned [6–8]. Yu.F. Kopnichev
[9] studied attenuation regularities in the lithosphere of the BRS southwestern flank and estimated
the degree of absorption based on the data of distant stations over the whole region. In general, the
regularities of deep variations in the seismic quality factor for the major part of the region are still
poorly investigated.

Method and data

Depth sections with a seismic quality factor Qc were obtained by using coda waves of moderate
and strong local earthquakes (twenty events with a magnitude of M ≥ 4 recorded at an epicentral
distance of up to 200km, Fig. 1). The data were processed by two methods, such as the seismic
coda envelope [6, 9] and the sliding window (the window length was chosen to be 10–15s with a
step –5s). The coda wave penetration depth was calculated by the standard approach based on
simple geometric considerations [10]. The Q-value at a frequency of 1Hz was used to analyze deep

1



Crustal and lithosphere structuresS.3

224 The International Conference on Astronomy & Geophysics in Mongolia, 20-22 July, 2017

variations in attenuation, because the attenuation field heterogeneity is best defined at this very
frequency [9].

Figure 1: The position of seismic profiles in the studied region. Seismic stations are indicated with
triangles, the position of sections is shown with black lines, the number of sections is indicated with
figures, and Cenozoic rift depressions are shown with letters: (K) Kichera, (UA) Verkhneangarsk,
(NB) North Baikal, (B) Barguzin, (TsB) Tsipa-Baunt, (UM) Upper Muya, (Mk) Muyakan, (M)
Muya, (Ch) Chara. The Udokan basalt field is shown in dark gray.

Results

As a result, we obtained one-dimensional depth sections of a seismic quality factor Qc for eleven
local areas in the region considered (Fig.2). The depth range was about 260km (from 44 to 306km)
and included the lithospheric mantle and asthenosphere (Figs.2). Qc depth sections are indicative
of relatively high variations in the quality factor (from 50 to 170) at an irregular change in the Qc
value with depth due to alternation of layers with a higher and lower attenuation (Fig.2). Previously,
we noted the confinement of changes in attenuation characteristics to velocity boundaries in the
lithosphere [4, 5]. At a depth of about 100km, almost all profiles are characterized by the occurrence
of a thin layer (depth of more than 20km) with a higher attenuation (Fig.2); the layer location
depth and thickness are somewhat different at different stations. For instance, at the Ulyunkhan
station (YLYR, profiles 1, 2) located on the northern closure of the Barguzin depression, this layer
is located at a depth from 70 to 90km (profile 1) and from 90 to 100km (profile 2). Under the
Kichera depression (Nizhneangarsk station, NIZ, profile 3), the layer lies at a depth of 110–140km;
under the Kichera–Verkhneangarsk interdepression spure (Kumora station, KMO, profile 5), it gets
somewhat thinner and is noted at a depth of 100–120km. The higher attenuation layer begins at a
depth of 115km under the Verkhnengarsk depression (Yoyan station, Y OA, profile 6), and it rises to
a depth of100–110km under the Verkhneangarsk–Muya spur (Severomuisk station, SV KR, profiles
7, 8). The Chara depression and its mountain framing (Chara station, CRS, profiles 9, 10, 11) are
characterized by the deepest position of the roof of the higher attenuation layer such as 120–140km.
A fairly thick layer of higher attenuation of seismic waves is also located in the section bottom under a
few stations. It lies at a depth of 160–200km in the western part of the considered area and at a depth
of 180–240km in the east. It should be noted that the higher attenuation of seismic waves is typical
of the section top (depth of less than 100km). According to the measurement data, the lithosphere
of the Verkhneangarsk–Muya spur (Severomuisk station, SV KR, profiles 7, 8) is characterized by a
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layer with the lowest seismic quality coefficient (Qc(profile7) = 56, Qc(profile8) = 68), right under
the crust, at a depth of less than 75km. Previously, the high attenuation of seismic waves in this
area was noted by estimation of the effective quality factor of the lithosphere [4] and was related
to the high degree of medium heterogeneity. Profiles 9 and 10 (Chara station, CRS) characterizing
the lithosphere in the southern part of the Chara depression and north of the Udokan uplift are also
indicative of layers with a higher attenuation within the depths of 60–100km.

Discussion

The deep structure of the lithosphere and upper mantle in the studied region was considered in [11–
14]. As follows from the analysis data on velocity anomalies of P-waves obtained by 2D teleseismic
tomography along the strike of BRS [13], the boundary between negative and positive anomalies of
seismic wave velocities is traced under many structures of the rift system at depths of 90–110km.
This information is in compliance with our data on the location depth of the higher attenuation
layer. Alongside with that, it should be noted that under the Chara depression and its mountain
framing, the roof of this layer is immersed to a depth of 120–140km in consistency with the higher
thickness of the lithosphere in the transition from the folded area to the Siberian Platform. According
to the deep seismic sounding data, the low-velocity mantle area is characterized by a two-layered
structure [11]. An abnormal subcrustal layer of 20–50km in thickness is separated from deeper levels
of the upper mantle with similar velocity characteristics (7.6–7.8km/s) by a layer with normal wave
velocities typical of this depth (8.0–8.1km/s). The difference in a quality factor Qc between these
layers ranges from 15–20 to 30–50. According to the magnetotelluric sounding data [12], the studied
region hosts a conducting asthenosphere layer at a depth of 80–120km corresponding to a layer with
a lower velocity of seismic waves. According to [12], it was formed due to partial melting of mantle
rocks. The data given in [15] are in good compliance with our information on the lithosphere foot
depth obtained by seismic tomography.

Figure 2: Schematic section of the lithosphere and upper mantle of the BRS northeastern flank
based on the interpolation of data on the absorption of seismic coda waves. (1) seismic quality
factor curves; (2) areas with a higher attenuation of seismic waves; (3) assumed boundaries of higher
attenuation area; (4) boundary between lithosphere and asthenosphere (LAB); (5) Moho boundary
(M) [11]; (6) Lehmann boundary (L); (7) seismic stations and their names.

As is seen when comparing the obtained Qc sections with one-dimensional profiles of S-wave
velocities [14], variations in the quality factor values are confined to the velocity boundaries of the
medium and areas with higher seismic wave velocities are also characterized by higher Qc values
and vice versa (Fig.2). Both methods indicate a three-layer structure of the asthenosphere in the
region. The lower boundary of the area with a lower velocity and higher attenuation of seismic
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waves in the mantle (Lehmann border) is located at a depth of 190–240km. Layers with a higher
attenuation of seismic coda waves in the lithosphere (depth of less than 100km) recorded within
the Verkhneangarsk–Muya spur and in the Chara depression likely have a different origin. In the
first case, their formation can be related to higher seismic activity, fragmentation, and, consequently,
elevated fluid saturation of the lithosphere. In the second case, we should not rule out the occurrence
of intermediate magma chambers—sources of Late Cenozoic basalts at the Udokan volcanic field—at
the depth of 70–90km and confinement of higher seismic wave attenuation areas to them. In addition,
lithosphere thinning observed under the Udokan field may also be indicative of a melting area in the
upper mantle.
Hence, we obtained a multilayered model of the seismic quality factor of the lithosphere and upper

mantle in the BRS northeastern flank with alternating layers with a higher and lower seismic wave
attenuation (Fig.2). The asthenosphere located at a depth of 90–150km in the region corresponds
to layers with a higher attenuation in the section bottom. In addition, one more layer with a higher
attenuation identified at a depth of 180–240km can also be interpreted as a part of the asthenosphere.
The higher wave attenuation in these layers is most likely related to heterogeneities as horizontal
boundaries and to partial melting of the mantle material. The occurrence of layers with a higher
attenuation in the section top may be due to high seismic activity, tectonic fragmentation, and fluid
saturation of the lithosphere, and also due to the occurrence of magmatic chambers in the lithosphere
within the Udokan volcanic field.

Conclusion

The model of formation of the Baikal rift due to uplifting of a consolidated anomalous mantle body
to the lithosphere foot and spreading around proposed previously in [1] assumes the occurrence of
a thick layer in all sections, which is characterized by a higher attenuation under the basement of
the lithosphere getting thinner. According to our data and [13, 14], there is no consolidated body
under the lithosphere of the BRS northeastern flank. The lithospheric and asthenospheric mantle
is characterized by a layered structure preventing the convection. The resulting multilayered model
of the seismic quality factor of the lithosphere and upper mantle of the BRS northeastern flank
together with analogous results for the southwestern flank [9] may be indicative of passive formation
of the rift system.

This work was supported by the Russian Foundation for Basic Research (project no. 17-05-00826).
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